Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
1: 12.500048 2: 18.750062 6.250013 4: 25.170949 6.420888 1.027340 8: 31.693743 6.522794 1.015871 16: 37.909443 6.215700 0.952920 163.717658 32: 43.669983 5.760540 0.926773 116.575916 64: 48.941909 5.271926 0.915179 105.823609 128: 53.739774 4.797865 0.910078 102.297909 256: 58.094627 4.354853 0.907665 100.903254 512: 62.042770 3.948143 0.906608 100.369371 1024: 65.620563 3.577793 0.906196 100.184122 2048: 68.862056 3.241493 0.906003 100.105789 4096: 71.797179 2.935123 0.905485 99.916672 8192: 74.455626 2.658447 0.905736 99.999355 16384: 76.863716 2.408090 0.905826 100.026223 32768: 79.045333 2.181617 0.905953 100.060856 65536: 81.019926 1.974593 0.905105 99.853568
The second program calculates squares of size thousand and then glues these together into a larger square. The program counts all the closed loops into this larger square, all the open loops that start from the edge, and the number of loops when the larger square would tile infinitely in all directions. Below the results for the larger square of size 2,392,000.
closed loops 1: 12.493719 12.493719 2: 18.743736 6.250017 0.500253 25.000074 4: 25.164570 6.420834 1.027331 8: 31.687396 6.522826 1.015885 16: 37.903001 6.215604 0.952900 163.654905 32: 43.663582 5.760582 0.926793 116.592477 64: 48.935576 5.271994 0.915184 105.821788 128: 53.732895 4.797319 0.909963 102.217151 256: 58.087519 4.354624 0.907720 100.922381 512: 62.035303 3.947784 0.906573 100.342748 1024: 65.612240 3.576937 0.906062 100.112939 2048: 68.852944 3.240704 0.906000 100.087675 4096: 71.787913 2.934969 0.905658 99.962758 8192: 74.446751 2.658838 0.905917 100.048465 16384: 76.855399 2.408648 0.905902 100.044104 32768: 79.036567 2.181169 0.905557 99.950543 65536: 81.011179 1.974612 0.905300 99.887785 131072: 82.798137 1.786958 0.904967 99.814658 262144: 84.412389 1.614252 0.903352 99.500573 524288: 85.869983 1.457593 0.902953 99.431783 1048576: 87.195275 1.325293 0.909234 100.471130 2097152: 88.389223 1.193947 0.900893 99.242344 4194304: 89.478741 1.089518 0.912534 100.845767 8388608: 90.462942 0.984202 0.903337 99.660479 16777216: 91.354342 0.891400 0.905708 99.916601 33554432: 92.162496 0.808154 0.906612 100.008094 67108864: 92.859149 0.696653 0.862030 97.211789 134217728: 93.533627 0.674478 0.968170 114.049322 268435456: 94.082341 0.548714 0.813539 96.476405 536870912: 94.592299 0.509957 0.929368 101.302246 1073741824: 95.112775 0.520476 1.020627 2147483648: 95.357816 0.245041 0.470801 95.575816 4294967296: 95.357816 0.000000 0.000000 95.357816 8589934592: 95.534888 0.177072 open loops 1: 0.000042 2: 0.000042 0.000000 4: 0.000081 0.000039 8: 0.000133 0.000052 1.315765 16: 0.000205 0.000072 1.402178 32: 0.000304 0.000099 1.371537 64: 0.000438 0.000133 1.344078 128: 0.000617 0.000180 1.348334 256: 0.000861 0.000244 1.355238 512: 0.001188 0.000326 1.338883 1024: 0.001625 0.000437 1.339179 2048: 0.002213 0.000588 1.345623 4096: 0.003003 0.000790 1.344026 8192: 0.004066 0.001063 1.344681 16384: 0.005509 0.001443 1.357898 32768: 0.007415 0.001906 1.320786 65536: 0.010008 0.002593 1.360525 131072: 0.013572 0.003564 1.374276 262144: 0.018348 0.004776 1.340206 524288: 0.024735 0.006387 1.337181 1048576: 0.033401 0.008666 1.356814 2097152: 0.045087 0.011686 1.348511 4194304: 0.060032 0.014945 1.278923 8388608: 0.079870 0.019838 1.327387 16777216: 0.107546 0.027676 1.395115 33554432: 0.153510 0.045964 1.660766 67108864: 0.201192 0.047681 1.037357 134217728: 0.269990 0.068798 1.442885 268435456: 0.355750 0.085760 1.246539 536870912: 0.452635 0.096885 1.129728 1073741824: 0.597440 0.144805 1.494598 2147483648: 0.781714 0.184274 1.272567 4294967296: 1.153069 0.371356 2.015240 8589934592: 1.385508 0.232438 0.625918 17179869184: 2.017776 0.632269 2.720159 34359738368: 2.844043 0.826267 1.306828 68719476736: 4.458862 1.614819 1.954355 tiles 1: 12.493730 12.493730 2: 18.743757 6.250027 0.500253 25.000116 4: 25.164607 6.420850 1.027331 8: 31.687457 6.522850 1.015886 16: 37.903095 6.215639 0.952902 163.660648 32: 43.663725 5.760630 0.926796 116.596031 64: 48.935785 5.272060 0.915188 105.825537 128: 53.733195 4.797410 0.909969 102.221851 256: 58.087941 4.354746 0.907729 100.928208 512: 62.035889 3.947948 0.906585 100.350432 1024: 65.613054 3.577165 0.906082 100.124076 2048: 68.854062 3.241009 0.906027 100.101847 4096: 71.789431 2.935368 0.905696 99.980717 8192: 74.448820 2.659389 0.905981 100.075166 16384: 76.858192 2.409373 0.905987 100.076992 32768: 79.040359 2.182166 0.905699 99.998619 65536: 81.016282 1.975923 0.905487 99.946752 131072: 82.805034 1.788752 0.905274 99.899664 262144: 84.421823 1.616789 0.903865 99.622882 524288: 85.883016 1.461193 0.903762 99.604916 1048576: 87.212994 1.329977 0.910200 100.693450 2097152: 88.413218 1.200225 0.902440 99.515405 4194304: 89.509560 1.096342 0.913447 101.080002 8388608: 90.506534 0.996974 0.909364 100.509278 16777216: 91.413404 0.906870 0.909623 100.540794 33554432: 92.238358 0.824953 0.909671 100.546177 67108864: 92.958148 0.719790 0.872522 97.884741 134217728: 93.678066 0.719919 1.000179 268435456: 94.288153 0.610086 0.847438 97.676997 536870912: 94.874533 0.586380 0.961143 109.378884 1073741824: 95.496884 0.622352 1.061345 2147483648: 95.965885 0.469001 0.753595 97.400257 4294967296: 95.965885 0.000000 0.000000 95.965885 8589934592: 96.402051 0.436165 17179869184: 96.935889 0.533838 1.223936 34359738368: 96.935889 0.000000 0.000000 96.935889 68719476736: 96.935889 0.000000 137438953472: 99.993750 3.057861
Of course it is not possible to make any definite statements based on these statistics, I think it is safe to conclude that the number of infinite paths is low, below 5% and possibly even much lower. It is not unlikely that the chance of hitting a infinite path approaches zero. It is not difficult to create a tiled infinite diagonal maze with infinite paths, but that still could mean that they are very rare in a fully random infinite maze.
I decided to use the program I developed before, to see if there were any solutions. Here is the least connected solution found by the program:
All the 79 solutions (with only the solved part showing) found by the program are:
Then I got the idea for looking for all the solutions in eight by ten square. Below the collection of unique solutions (taken into account mirroring) is given. One would expect every unique solution to occur exact four times, but this is not the case. This could possibly hint at some error in the algorithm used, meaning that there could be more solutions.
gen_CWP 8 10 wozg | gen_dpfp -n | CWP 8 10 5 | SCWP 8 10 wozg | sort -uI had not expected that it would find any solution, but to my surprise it did find seven solutions, of two pairs are kind of similar, because all the green pieces are stacked in a column: